Comparative analyses of the conformational stability of a hyperthermophilic protein and its mesophilic counterpart.

نویسندگان

  • K Shiraki
  • S Nishikori
  • S Fujiwara
  • H Hashimoto
  • Y Kai
  • M Takagi
  • T Imanaka
چکیده

Comparison of the conformational stability of an O(6)-methylguanine-DNA methyltransferase (MGMT) from the hyperthermophilic archaeon Thermococcus kodakaraensis strain KOD1 (Tk-MGMT), and its mesophilic counterpart C-terminal Ada protein from Escherichia coli (Ec-AdaC) was performed in order to obtain information about the relationship between thermal stability and other factors, such as thermodynamic parameters, thermodynamic stability and other unfolding conditions. Tk-MGMT unfolded at Tm = 98.6 degrees C, which was 54.8 degrees C higher than the unfolding temperature of Ec-AdaC. The maximum free energy (DeltaG(max)) of the proteins were different; the value of Tk-MGMT (42.9 kJ.mol-1 at 29.5 degrees C) was 2.6 times higher than that of Ec-AdaC (16.6 kJ.mol-1 at 7.4 degrees C). The high conformational stability of Tk-MGMT was attributed to a 1.6-fold higher enthalpy value than that of Ec-AdaC. In addition, the DeltaG(max) temperature of Tk-MGMT was considerably higher (by 22.1 degrees C). The apparent heat capacity of denaturation (DeltaC(p)) of Tk-MGMT was 0.7-fold lower than that of Ec-AdaC. These three synergistic effects, increasing DeltaGmax, shifted DeltaG vs. temperature curve, and low DeltaC(p), give Tk-MGMT its thermal stability. Unfolding profiles of the two proteins, tested with four alcohols and three denaturants, showed that Tk-MGMT possessed higher stability than Ec-AdaC in all conditions studied. These results indicate that the high stability of Tk-MGMT gives resistance to chemical unfolding, in addition to thermal unfolding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics study of a hyperthermophilic and a mesophilic rubredoxin.

In recent years, increased interest in the origin of protein thermal stability has gained attention both for its possible role in understanding the forces governing the folding of a protein and for the design of new highly stable engineered biocatalysts. To study the origin of thermostability, we have performed molecular dynamics simulations of two rubredoxins, from the mesophile Clostridium pa...

متن کامل

Comparative in silico analyses of proteins involved in serum resistance as promising vaccine candidates against Acinetobacter baumannii

Introduction: Acinetobacter baumannii as a Gram-negative coccobacillus has become a major cause of hospital-acquired infections. The virulence factors involved in serum resistance are important targets in the development of an effective vaccine against this pathogen. Our aim in this project was in silico analyses of A. baumannii proteins involved in serum resistance which could potentially be u...

متن کامل

Protein Stability, Folding, Disaggregation and Etiology of Conformational Malfunctions

Estimation of protein stability is important for many reasons: first providing an understanding of the basic thermodynamics of the process of folding, protein engineering, and protein stability plays important role in biotechnology especially in food and protein drug design. Today, proteins are used in many branches, including industrial processes, pharmaceutical industry, and medical fields. A...

متن کامل

Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments.

Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate with concomitant oxidation of NADH during the last step in anaerobic glycolysis. In the present study, we present a comparative biochemical and structural analysis of various LDHs adapted to function over a large temperature range. The enzymes were from Champsocephalus gunnari (an Antarctic fish), Deinococcus radioduran...

متن کامل

Physical bases of thermal stability of proteins: A comparative study on homologous pairs from mesophilic and thermophilic organisms

We used classical molecular dynamics simulation method to investigate physical factors responsible for the increased thermal stability of proteins from thermophilic and hyperthermophilic organisms. Subject of investigation were two pairs of homologous proteins from the functional classes of: 1) cold shock proteins from Escherichia coli (mesophilic) and Bacillus caldolyticus (thermophilic) and 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of biochemistry

دوره 268 15  شماره 

صفحات  -

تاریخ انتشار 2001